Ubuntu ARM64 on Raspberry Pi CM4 with NVMe SSD

As you can imagine from the number of acronyms in the title, this took a huge amount of fiddling and was very confusing, so documenting it here for my own benefit and others’. 🙂

Those blue LEDs >_<

I wanted to run Ubuntu Server ARM64 on a Raspberry Pi CM4 dev board using a NVMe SSD for at least the root filesystem (and ideally booting from it)

Step 1: Update the CM4’s bootloader firmware

The CM4 probably has an older bootloader firmware installed from the factory that doesn’t support NVMe. This step is best done from a Linux PC: I used an old Acer laptop running Zorin 16. The below commands are to be entered in a terminal window:

First you need the latest version of the Raspberry Pi USB boot tool. This has to be built from source, and you may need to install some dependencies first (-1000 geek points if you didn’t already have git and build-essential 🙂 )


sudo apt install git
sudo apt install build-essential
sudo apt install libusb-1.0-0-dev

Now it’s time to build the USB boot tool from source…

git clone --depth=1 https://github.com/raspberrypi/usbboot
cd usbboot
make

Now you need to edit the boot order settings and get the latest EEPROM image. This part is adapted from this tutorial which doesn’t work verbatim any more (the “nvme” folder doesn’t exist in the usbboot repository, but substituting the “recovery” folder works)

cd recovery
sed -i -e '/^BOOT_ORDER=/ s/=.*$/=0xf25416/' boot.conf

NVMe on Raspberry Pi is still kind of bleeding edge, so it’s best to use the newest versions of everything. pieeprom-2021-07-06.bin was still the latest image at the time of writing:

rm -f pieeprom.original.bin
curl -L -o pieeprom.original.bin https://github.com/raspberrypi/rpi-eeprom/raw/master/firmware/beta/pieeprom-2021-07-06.bin
./update-pieeprom.sh

Note: At this point the update script crashed complaining that it couldn’t find Python. I guess Zorin 16 removed Python 2.x and forgot to make Python 3 the default? The python-is-python3 package fixed that for me. Hopefully your Linux distro has a functioning “python” already, in which case don’t execute this command, it’ll probably break something!

sudo apt install python-is-python3

Finally it’s time to burn your changes to the CM4… The “disable eMMC Boot” jumper must be fitted on J2 for this to work (Unless you have a CM4 Lite I guess…)

cd ..
sudo ./rpiboot -d recovery

Now connect the CM4 Dev board J11 “USB Slave” to a USB port of your Linux PC and apply power to the 12V DC input.

The rpiboot tool should boot up the CM4 over USB and flash the new EEPROM image and boot order settings. Once the command line spew stops and the power LED on the dev board starts to blink rapidly, the process is complete and you can disconnect power.

Step 2: Try to boot from NVMe, fail

At this point I already had an ARM64 Ubuntu 20.04 LTS image downloaded from here and uncompressed to my Gigabyte GP-GSM2NE3128GNTD SSD. So I removed the SD card from my CM4 dev board and tried to boot from the NVMe.

I got a surprisingly informative error message from the Raspberry Pi bootloader (on a monitor connected to HDMI0)

start4.elf is not compatible. nvme boot requires newer software

A bit of Googling got me to this forum thread:

So my first attempt at a fix was to update a 32-bit Raspbian SD card image with rpi-update and then copy the start4.elf and fixup4.dat files from that image to the NVMe boot partition. This got me to the next problem: The Ubuntu 20.04 image uses a version of U-Boot that doesn’t support NVMe, so it just sticks waiting for a boot device.

Next I tried downloading the Ubuntu Server 21.04 image and burning it to a SD card. I planned to go through the full process documented in the forum thread, starting with upgrading the Ubuntu image, so I inserted the SD card and powered up.

Step 3: Unexpected success

Imagine my surprise when it booted into Ubuntu 20.04 from the NVMe instead of 21.04 from the SD card as I was expecting. 😀

I guess what must have happened is that the boot partition on the 21.04 SD card had a version of UBoot that recognised the NVMe and treated it as a higher priority than the SD.

Confirming that the SD card is unused and root filesystem is on the NVMe SSD. It’s fast 8)

The next gambit would be to copy the boot partition from the SD card to the NVMe and see if it can boot directly from NVMe. But it works well enough as is, I don’t want to break it! This is left as an exercise for the reader 😉

Step 5: Try to make it boot directly from NVMe

Unfortunately on subsequent boots it flipflopped between NVMe and SD card as the root partition. So I thought since it’s Friday afternoon I should try to get it to boot directly from NVMe.

I started by deleting all files in the boot partition on the NVMe and replacing with the ones from the Ubuntu 21.04 SD card. The kernel is in /boot/vmlinuz, while the modules are stored on the root filesystem, so this would normally cause the modules to fail to load, except I noticed that I somehow managed to update the Ubuntu 20.04 installation on the NVMe so it was running the same kernel and modules as 21.04.

This still didn’t work, so I went back to that forum thread and replaced start4.elf and fixup4.dat with the ones from the updated Raspbian image.

Finally I got a direct boot from NVMe, with what I guess is Ubuntu 21.04 kernel and 20.04 userland. That works fine for me, I’d rather it ran a LTS version of Ubuntu.

The Carbon Hat

Recently work has seen me fiddling with JSON APIs and Python’s requests module. I was also intrigued by the talk of decarbonisation and the banning of gas-fired heating systems.

The received wisdom when I studied this stuff was that it was better to burn fossil fuels in your home directly, than have a power station burn them for you and use the resulting electricity for heating, but maybe the increasing amount of wind energy on the grid has changed things?

While researching this I came across this fine effort by National Grid, Oxford University, WWF, and Environmental Defense Fund Europe. They are using machine learning to forecast the carbon intensity of electricity for the UK’s regions up to 48 hours in advance. Interestingly, in spite of the UK having a “national grid”, the carbon intensity can be very different for different regions, as power seems to mostly be consumed in the same region it’s generated. It turns out that living near to one of Europe’s largest wind farms and 2 funky vintage nuclear power stations, the electricity supply to Conner Labs is mostly wind and nuclear and can have a very low carbon footprint indeed.

Since Carbon Intensity didn’t offer a handy regional forecast widget, and JSON APIs are almost fun, the obvious course of action was to grab a Raspberry Pi and make something to inform my electricity consumption decisions.

https://github.com/ConnerLabs/carbonhat The source code is here for your edification and entertainment (?)

Carbon Hat surrounded by other experimental IoT junk

I found a Sense HAT in my drawer of IoT junk (some might say it’s more like an entire building than a drawer) so I used the RGB LED matrix on that to display the result. It fades from green at an intensity of 0, through to red at 215g CO2/kWh, which is approximately the carbon footprint of natural gas burnt for heating. All LEDs are programmed to the same colour, and it is covered with a globe from a broken LED light bulb to make it look like a single light source.

Carbon Intensity’s forecasts are updated every half hour, so I pull the 24 hour regional forecast from their API a few minutes after each half hour, and crunch it down to a single number representing the average carbon intensity for the next 3 hours.

Wolfson Pi Audio Card – first impressions

Ever since the Raspberry Pi came out, I’ve been experimenting with its audio capabilities. The latest audio gizmo available for it is the Wolfson Pi Audio Card, which promises 24 bit, 192kHz recording and playback, with analog and digital I/O, for a very reasonable price. So of course I ordered one straight away. 🙂

After waiting a month I finally got my hands on it. The software installation is somewhat unclear so I will document what I did here. I didn’t want to use the Wolfson official image as it was a massive 8GB download. I started with a copy of the image that I developed for PiTunes, and applied this patch to it, which adds the Wolfson kernel and the support files for the audio card. I then changed mpd.conf to use audio output device hw0,0 (it was previously 1,0 for the USB audio device) and added a call to SPDIF_playback.sh in my .bash_login file, to set the card up for digital output.

I also removed the invocation of pikeyd from /etc/rc.local, as the keypad and encoder were not present. They can’t be used anyway, since the Wolfson audio card hogs all of the GPIO pins. It doesn’t really matter, as MPD can always be controlled remotely.

On firing this up, I was surprised to find that it worked first time! 🙂 I verified the output to be bit perfect at 24 bit, 96kHz. This is possibly the best value for money HD audio source you can get anywhere: you should be able to pick up a Raspberry Pi, a Wolfson Audio Card, a wifi dongle and a hard disk for under £100.